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Abstract

It is well recognized that atopic sensitization is an important risk factor for

asthma, both in adults and in children. However, the role of allergy in severe

asthma is still under debate. The term ‘Severe Asthma’ encompasses a highly

heterogeneous group of patients who require treatment on steps 4–5 of GINA

guidelines to prevent their asthma from becoming ‘uncontrolled’, or whose dis-

ease remains ‘uncontrolled’ despite this therapy. Epidemiological studies on emer-

gency room visits and hospital admissions for asthma suggest the important role

of allergy in asthma exacerbations. In addition, allergic asthma in childhood is

often associated with severe asthma in adulthood. A strong association exists

between asthma exacerbations and respiratory viral infections, and interaction

between viruses and allergy further increases the risk of asthma exacerbations.

Furthermore, fungal allergy has been shown to play an important role in severe

asthma. Other contributing factors include smoking, pollution and work-related

exposures. The ‘Allergy and Asthma Severity’ EAACI Task Force examined the

current evidence and produced this position document on the role of allergy in

severe asthma.

Numerous epidemiological studies have demonstrated that

atopic sensitization is a strong risk factor for asthma in child-

hood (1, 2) and adulthood (3), both in the developed (3) and

in the developing countries (1, 2, 4), supporting the notion

that asthma is in part an allergic disease. However, the role

of allergy in severe asthma remains the issue of considerable

controversy. The term ‘severe asthma’ encompasses a highly

heterogeneous group of patients, which is defined in various

ways in the literature (5). Recent international guidelines

define ‘severe asthma’ as asthma which requires treatment at

GINA steps 4–5 during the previous year or systemic corti-

costeroids (CS) for ≥50% of the previous year to prevent it

from becoming ‘uncontrolled’, or asthma which remains ‘un-

controlled’ despite this therapy, or controlled asthma that

worsens on tapering high doses of inhaled corticosteroids

(ICS), systemic CS or additional biologics (6).

Asthma exacerbations are one of the key features of severe

asthma. Emergency room visits and hospital admissions due

to acute asthma attacks are increased in children who are

sensitized and exposed to high levels of inhalant allergens in

their homes, emphasizing the importance of ‘allergy’ in

asthma exacerbations (7). The phenotypes of childhood

onset allergic asthma and early sensitization are often associ-

ated with severe asthma in adulthood (8). However, some

data indicated that the proportion of severe asthma cases

attributable to allergy may be overestimated and that aetio-

logical mechanisms other than allergy may be important in

the pathogenesis of severe asthma. For example, numerous
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studies have reported a strong association between asthma

exacerbations and respiratory viral infections, suggestive of a

viral-induced mechanism. Rather than being mutually exclu-

sive, viruses and allergens may interact in increasing the risk

of asthma development (9).

Furthermore, fungal sensitization is strongly associated

with severe asthma; hence, recently a new subtype of Severe

Asthma with Fungal Sensitization (SAFS) has been proposed

(10).

Finally, the role of several cofactors, such as smoking, pol-

lution and work-related exposures, must be considered when

evaluating a patient with severe asthma.

The ‘Allergy and Asthma Severity’ EAACI Task Force

produced this position document on the role of allergy in

severe asthma, searching the literature of the last 10 years in

the main databases (MEDLINE, Scopus, ISI) and including

milestone and important papers at the discretion of the dif-

ferent co-authors.

Definition and role of inhalant allergens in asthma

Atopy, allergy and asthma

The association between atopy and asthma appears specific

to inhalant allergens (4). In general, atopic sensitization is

defined either when allergen-specific serum IgE (sIgE) is

detected, or a positive skin prick test (SPT) to extracts

made from whole-allergen sources (11, 12), often using arbi-

trary cut-off points of sIgE >0.35 KU/l, or a mean wheal

diameter ≥3 mm. These standard allergy tests have high sen-

sitivity, but in themselves do not signify disease. For exam-

ple, a considerable proportion of such defined sensitized

individuals have no evidence of asthma (13), and a positive

test in an asthmatic patient does not always result in clini-

cal response upon allergen exposure. Thus, there is a differ-

ence between allergic asthma with asthma symptoms

induced by exposure to a defined allergen, and asthma in a

subject characterized as ‘sensitized’ with no relation between

allergen exposure and clinical reaction. It has been sug-

gested that a positive allergy test (assessed either by sIgE or

SPT) should not be considered as a sole diagnostic marker

of atopic sensitization (14).

Quantification of atopic sensitization increases the specificity

in relation to asthma presence and severity

The last decade has seen the shift in the way we interpret the

results of IgE and SPTs. The sum of the levels of specific IgE

antibodies (or the summative size of SPT wheals) to inhalant

allergens is a better predictor of the onset, presence, persis-

tence and severity of childhood asthma than the mere pres-

ence of a ‘positive allergy test’ (15–17). The clinical

importance of ‘quantitative atopic sensitization’ has been

confirmed in subsequent studies in adult asthma (18). It is

now recognized that quantification of atopic sensitization in

early life among young children with wheezing is one of the

best discriminators to identify those who are at high risk of

subsequent development of persistent asthma (19).

Additionally, a clear quantitative relationship between the

level of sIgE and the size of SPT responses has been observed

in relation to asthma severity, both in adults and in children

(20, 21). For example, one of the phenotypic characteristics of

severe treatment-resistant asthma (STRA) in childhood is the

large size of SPT wheals to inhalant and food allergens. In

patients with STRA, results of sIgE measurements and SPTs

are not always concordant, indicating the need to carry out

both tests (17, 20). The level of sIgE is also associated with an

increased risk of severe asthma exacerbations requiring hospi-

talization among both children (17, 22) and adults (23).

Finally, it has been shown that there is a strong interaction

between the levels of sIgE to inhalant allergens and respira-

tory virus infections in increasing the risk of severe asthma

exacerbations requiring hospital admission (24), suggesting a

synergism between quantitative sensitization and respiratory

virus infections. This synergism has been indirectly confirmed

in a study showing that preseasonal anti-IgE-targeted therapy

with omalizumab decreases seasonal exacerbations of asthma

(‘back-to-school asthma’), which are almost certainly (rhino)

virus-induced (25). In contrast, a recent study showed that

although impaired IFN-b and IFN-k induction by rhinovirus

was a feature of bronchial epithelial cells from highly sensi-

tized children with STRA (26), there was no relationship

between sensitization and Th2-mediated inflammation with

impaired interferon production, raising a possibility of two

independent mechanisms (atopy-related and virus-related).

All of the above data indicate that in the assessment of

patients with asthma (including severe asthma), the results of

specific IgE measurement and SPT are not mutually exclusive

but complementary and should not be reported as being ‘pos-

itive’ or ‘negative’, but as the level of sIgE and the size of

SPT wheal diameter (i.e. quantified). For SPTs, the size of

the positive and negative control should be taken into

account. Recent data suggest that diagnostic accuracy of

specific IgE antibody measurement in the context of asthma

and the distinction between ‘benign’ atopy (i.e. sensitization

in the absence of allergic symptoms) and ‘pathologic’ atopy

(i.e. sensitization related to allergic symptoms) may be

improved by the measurement of allergen-specific IgG anti-

body levels (27), although their measurement is not recom-

mended routinely.

Heterogeneity of atopic sensitization

It has recently been proposed that ‘atopic sensitization’ may

be an umbrella term for a collection of several different sub-

groups of sensitization which differ in their association with

asthma and other allergic diseases (14). Distinct subgroups

(or classes) of sensitization were described in one popula-

tion-based birth cohort (Manchester Asthma and Allergy

Study) by applying a machine-learning approach with Baye-

sian inference to the SPTs and sIgE data collected longitudi-

nally from early life to school age (28), and similar latent

structure was subsequently described using comparable

approach to longitudinal data on atopic sensitization in

another birth cohort (Isle of Wight study) (14). Children

who would be considered sensitized using conventional
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definitions were clustered into four distinct subgroups char-

acterized by a unique pattern of the responses to different

allergens and the timing of onset of allergen-specific sensiti-

zation (28) (Fig. 1). Importantly, the risk of asthma was

increased more than 20-fold among children belonging to

one of these subgroups (those sensitized to multiple allergens

in early life – comprising less than one-third of the sensi-

tized children), but not among those in other classes (14,

28). Striking similarities were observed in the association

between different subgroups of atopic sensitization in these

two cohorts in relation to asthma severity, with children in

the subgroup of sensitization characterized by IgE responses

to multiple allergens in early life having higher FeNO levels,

more hyper-reactive airways and increased risk of severe

asthma exacerbations, having significantly diminished lung

function, compared to all other classes (14, 28, 29). It is of

note, however, that such subtypes (clusters/classes) of sensi-

tization can only be identified using statistical inference on

longitudinal data (14, 28) and that differentiation between

different clusters at any single cross-sectional point is not

yet possible (30). Clinical translation of this important

observation requires the development of specific and sensi-

tive biomarkers which can be measured at the time of pre-

sentation to clinic and which aid differentiation between

different sensitization subgroups. Recent data indicate that

IgE responses to individual allergenic molecules rather than

whole-allergen extracts may prove useful in differentiating

the subtypes of sensitization relevant to asthma onset and

severity (31, 32).

Progression from atopic dermatitis to allergic asthma – fact

or myth?

Although atopic dermatitis (AD) usually precedes allergic

asthma or rhinitis, a clear causal relationship for the typical

sequence in the development of these diseases – formerly ter-

med as the ‘atopic march’ – remains to be confirmed. Recent

analysis among 10 000 children followed from birth to school

age has demonstrated that, while point prevalence data for the

whole population may show a profile consistent with the atopic

march, modelling within individual data over the life course

shows seven different patterns, with >94% of children with

symptoms (AD, wheeze and rhinitis) during childhood not fol-

lowing the atopic march profile (33). Therefore, the atopic

march may be just an epiphenomenon of different allergic sub-

types occurring at similar time points of the individual develop-

ment (comanifestation), for example early-life wheeze and

early-life sensitization. Evidence from longitudinal studies sug-

gests that approximately one-third of patients with AD develop

asthma and two-thirds develop allergic rhinitis support the

hypothesis of an underlying common mechanism. A review of

four population-based cohort studies with a minimum of 80%

follow-up confirmed that early-life AD (especially IgE-asso-

ciated AD) is a significant risk factor for developing asthma

later in life (pooled OR 2.14; 95% CI 1.76–2.75) (34). Interest-
ingly, in two of these cohorts, the significant association of

early-life eczema and asthma disappeared when adjusted for

early-life wheeze and sensitization, but was still present when

adjustment was confined to early-life wheeze, suggesting that

sensitization is a major common factor. It also points to a

putative mechanism where AD may increase the risk of subse-

quent sensitization, which in turn increases the risk of asthma.

Filaggrin gene (FLG) mutations are associated with both

atopic and nonatopic eczema starting in the first year of life.

FLG mutations combined with eczema in the first year of life

are associated with a later development of asthma and hay

fever, and this may support the latter mechanism (35). This

more modern view of the atopic march is furthermore

strongly supported by recent data on the defective skin bar-

rier function as the key factor for the pathogenesis of AD

(36). Skin barrier dysfunction facilitates transdermal dehydra-

tion and infiltration of allergens, bacteria and bacterial tox-

ins, thus inducing and enhancing allergen sensitization as a

hallmark of the atopic march (37). Skin sensitization is fol-

lowed by airway sensitization to the same allergen and is one

of the most robust predictors for the development of child-

hood asthma (38). This is detailed further on in this review.

In conclusion, there is evidence for the hypothesis linking

AD as an initial (but probably not only) promoter of atopy/

allergic sensitization with progression to asthma.

Component-resolved diagnostics in asthma

Recent advances in biochemistry and molecular biology have

led to the isolation and characterization of numerous

Figure 1 For those children who suffered a hospital admission

with wheeze or asthma after age 3 years, a highly significant

increase in the risk was seen only among children in the multiple

early sensitisation subgroup (HR 9.2; 95% CI, 3.5–24; P < 0.001),

but not other atopy classes. Simpson et al. (28).
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allergenic proteins (components), facilitating the profiling of

IgE reactivity to individual allergens at a molecular level.

This new approach to allergy diagnosis has been termed

molecular diagnosis or component-resolved diagnostics

(CRD), and its commercialization has facilitated the develop-

ment of products in which sIgE to >100 allergen components

can be measured simultaneously. CRD may help in identify-

ing patients at risk of developing more severe disease (31,

32). Sensitization to mite allergens Der p 2 and Der f 2 has

been reported to be more common in severe asthma (39).

Latex allergy and asthma is another example where sensitiza-

tion to 3 of 12 recombinant natural rubber antigens (5, 6.01/

6.02) was strongly linked with asthma (40).

The role of these novel tools in clinical practice and how

best to interpret the complex data they generate is the subject

of ongoing debate (41, 42). It has recently been reported that

CRD may improve the assessment of asthma (31, 43) and

help better understanding the role of allergy in severe asthma

in childhood (44). However, it is likely that better interpreta-

tion algorithms are needed to capitalize fully on the potential

of this exciting new technology (43).

Similarities and distinctions between adult and

paediatric severe asthma

A fundamental feature of severe asthma in both adults and

children is its heterogeneity, with multiple clinical phenotypes

(6, 45–50). When unsupervised cluster analyses are per-

formed, whether in adults or children, several common clini-

cal features provide phenotypic distinctions, including the

age of onset of disease, presence of comorbidities, differences

in lung function and the degree of atopic sensitization (50–
52). Using this approach, it appeared that the role of atopic

sensitization might be more important in the pathogenesis of

severe asthma in early life. Severe atopy, characterized by

polysensitization and high specific IgE levels, is integral to

childhood severe disease, such that >85% of children with

severe asthma are severely atopic (53). In concurrence, when

phenotypic clusters are investigated in adults with severe

asthma, the single most important factor that repeatedly dis-

tinguishes the importance of allergy is age of disease onset

(45). The phenotype of childhood onset asthma is robust, is

repeatedly identified in adult cluster analyses and is undoubt-

edly associated with very severe allergic disease (8). In con-

trast, severe adult-onset asthma is a distinct phenotype that

is usually not characterized by atopic sensitization, but often

associated with nasal polyposis and sputum eosinophilia (54).

Atopy and paediatric severe asthma

The importance of early atopic sensitization contributing to

childhood severe asthma is reflected in the evidence of early

sensitization in preschool children being the main predictor

of asthma development by school age (19, 55). In addition,

even though recurrent wheezing episodes caused by rhi-

novirus infections in the first 3 years of life strongly predict

asthma development (56), early atopic sensitization is the

main risk factor determining progression to asthma (56).

Moreover, the pattern of atopic sensitization to inhalant

allergens, in particular to perennial ones, and the level of

specific IgE increase asthma risk (57).

The significant contribution of allergy to the pathogenesis

of paediatric severe asthma is apparent from the clinical fea-

tures that distinguish patients with difficult asthma (who

have underlying modifiable factors) from those with genuine

STRA (58). Significantly, more patients with STRA are poly-

sensitized and have food allergy. Perhaps the most important

distinctive feature of STRA becomes apparent when atopic

sensitization is quantified (18, 59). Patients with severe

asthma have a much higher allergic burden (51, 60) suggest-

ing that atopic sensitization plays a critical role in the devel-

opment, progression and persistence of paediatric severe

disease.

Adult-onset, severe asthma: an age-specific phenotype

Adult-onset asthma is a recognized phenotype of severe

asthma, presenting with several subphenotypes (61).

Although it is considered predominantly nonallergic, a signif-

icant proportion of patients with adult-onset disease are ato-

pic (34%) (61). In those with severe disease, a worse

prognosis is apparent in smokers and ex-smokers (62), and,

as described later on, smoke exposure has a detrimental

effect on severe asthma, resulting in reduced corticosteroid

responsiveness, regardless of age (63). Distinguishing and

specific features of adult-onset asthma include association

with comorbidities, such as obesity, and a predominance in

middle-aged women (64). The adult-onset obese, female pre-

dominant phenotype is characterized by the absence of

inflammation and atopic sensitization. Although this specific

set of features is seen in adults, mechanisms resulting in obe-

sity-associated asthma may not be dissimilar in children and

adults. Children with severe asthma who have a higher BMI

are less likely to have detectable inflammatory Th2 cytokines

and have relatively higher lung function than those with

lower BMI (53).

Another common adult-onset phenotype includes severe

(nonallergic) eosinophilic phenotype, which is the most

prevalent phenotype of severe asthma in adults, associated

with aspirin sensitivity, nasal polyposis and eosinophilia, all

persisting despite the treatment with high doses of inhaled

corticosteroids (54). Innate immune mechanisms underlying

this phenotype have recently been proposed because it has

become apparent that patients respond to anti-IL-5 antibody

therapies (65).

Contribution of allergy to mechanisms underlying severe

asthma

The role of allergy in severe asthma needs to be understood

to help identify underlying mechanisms of disease progression

which will impact both on the choice of add-on therapies

and on the discovery of novel therapeutics. Even though the

majority of children and adults with early-onset severe

asthma are sensitized, it is interesting that not all respond to

treatment with omalizumab (66, 67) suggesting several
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different mechanisms contributing to the development of dif-

ferent allergic phenotypes.

Typically, the allergic asthma phenotype is associated

with eosinophilia, elevated serum IgE and Th2 cytokines.

However, in adult-onset asthma, eosinophilia may be pre-

sent without overt evidence of allergy (65). The limited con-

tribution of allergy to disease persistence is apparent in

adults with severe asthma who show a nonallergic, inhaled

corticosteroid-’resistant’ eosinophilic phenotype, which

responds to systemic CS and targeted therapy with anti-IL-

5 (mepolizumab) (68). Novel mechanisms that may con-

tribute to this adult-onset phenotype include epithelial

innate cytokines that directly induce the recruitment of

innate lymphoid cells which secrete Th2/’allergic’ cytokines

without the generation of IgE or an adaptive immune

response (69). Interestingly, even though it is thought that

this is an innate, nonadaptive, nonallergic immune response,

all murine experimental models investigating the role of

innate cytokines in asthma pathogenesis used allergen expo-

sure as the stimulus, suggesting allergy still plays a central

mechanistic role in this phenotype (70). It is possible that

allergy is a risk factor in the development of adult-onset

‘nonallergic’ eosinophilic asthma, but the clinical manifesta-

tion of asthma changes with time and age, whereby it is less

overtly ‘allergic’, but remains eosinophilic.

In asthma, the effect of innate immunity eliciting Th2

responses seems to be strongly related to IL-33 (71) and is

especially associated with severe disease. IL-33 expression is

increased in bronchial tissue from both adults (72, 73) and

children (74) with severe asthma. Other important features of

innate cytokines that may contribute to the pathogenesis of

severe disease in both adults and children include their role

in (relative) corticosteroid resistance (74) and their associa-

tion with angiogenesis and airway remodelling, in particular

as regards IL-25 (74–76).
An interesting distinction of adult asthma phenotypes

based on gene expression of periostin by airway epithelial

cells includes the separation in Th2 high and Th2 low pheno-

types (77), and the utility of this biomarker to predict thera-

peutic response to antibodies that block Th2 cytokines (78).

Although biomarkers that allow such distinctions have not

yet been identified in children, and while in general, children

with severe asthma have low or undetectable Th2 cytokines

in airway samples, there is a subgroup in whom Th2 cytoki-

nes can be detected (53), emphasizing similarities between

adult and childhood disease.

Cross-talk between environmental factors, atopic

sensitization and asthma

The airway epithelial barrier

Environmental stimuli, such as viruses, bacteria and air pol-

lutants, are known activators of innate immunity and may

thus enhance the airway inflammation in asthmatic patients.

Allergens, apart from being recognized by the adaptive

immunity, may also play a crucial role in activating innate

immunity through proteases, biologically active glycolipids

and enzymes (79). The airway epithelial barrier, for long time

perceived as only a mechanical barrier, is now also recog-

nized as a gate to initiate atopic sensitization and allergic

inflammation (80). Epithelial cells recognize the allergens

with the help of pattern recognition receptors and produce

an innate immune response. As apical junctional complexes

between the airway epithelium cells are being disrupted by

viral infections and inhaled airway irritants, they facilitate

the entry of allergens from the lumen to be presented to the

dendritic cells.

In bronchial biopsies and brushings especially from more

severe asthmatic patients, airway epithelium cells showed

structural and functional defects in apical junctional com-

plexes compared to healthy controls (81). However, this

reduced barrier function was found to be reversible by epi-

dermal growth factor (EGF) treatment (81).

The role of microbiota

Early-life airway and gut microbiota and influencing factors

such as the delivery method, feeding practices, antibiotic use

and living environment were shown to be related with aller-

gic asthma development (82). Both the microbial burden

and diversity within the lower airways were shown to be

significantly higher in suboptimally controlled asthmatic

patients compared to healthy individuals (83). Proteobacte-

ria species significantly predominated in asthmatic patients

using inhaled corticosteroids and showed the strongest cor-

relations with the degree of bronchial hyper-responsiveness

(82). In addition, corticosteroid resistance in asthmatic

patients was found to be related to airway microbiome

diversity (84). In these patients, Haemophilus parainfluenza

dominated the microbiome and was shown to inhibit the

response to corticosteroid treatment compared to corticos-

teroid responsive asthmatic patients. Microbial diversity was

also shown to increase the risk of rhinovirus-induced

asthma exacerbations in children (85). If rhinovirus existed

concomitantly with Moraxella catarrhalis, Streptococcus

pneumoniae or Haemophilus influenzae within the airways,

the risk of asthma exacerbations was found to be signifi-

cantly increased as compared to children without these

pathogens.

Viruses

The interaction between viral lower respiratory tract infec-

tions (LRTI) and atopic sensitization has been recognized as

a major factor contributing to asthma development and exac-

erbation (86, 87). Birth cohort studies provide strong evi-

dence for a synergistic effect of viral LRTI and atopic

sensitization on asthma inception particularly in predisposed

children (56, 88). Other factors reported to increase the risk

of asthma development include the type of virus (more than

tenfold increased risk for asthma development with rhi-

novirus compared to fivefold with respiratory syncytial

virus), the severity of viral LRTI, the age during viral LRTI

and the atopic predisposition (89). Very recently, the number

of respiratory episodes in the first years of life, but not the
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particular viral trigger, was reported to be associated with

later asthma development (90).

Respiratory viral infections in combination with atopic

sensitization and exposure to allergens increase the risk of

hospital admission due to asthma exacerbation both in chil-

dren (91) and in adults (92). Rhinoviruses (RV), especially

RV-C group, are the most frequent viruses detected during

an asthma exacerbation (22) including severe asthma exacer-

bations with near-fatal and fatal asthma (23). Also, allergic

asthmatic individuals experience more severe and prolonged

LRTI symptoms with RV infection compared to nonatopic

healthy controls (93). Biological mechanisms including

impaired innate or altered adaptive immune function, abnor-

mal airway structure and function following prior infections,

genetic influences and extrinsic factors, such as maternal

smoking, air pollution and nutritional factors (vitamin D),

may explain the altered immune response to viral infections

in asthmatic/allergic patients (87). Recently, antibody titres

to species-specific RV infection in children during asthma

exacerbation showed that antibody response to RV-C is low

even when the virus was detected, pointing to a divergent

and possibly less efficacious immune response to this subtype

compared to RV-A and B (94). The association of suscepti-

bility to RV infection with asthma was also investigated in

human bronchial epithelial cells showing impaired interferon

production to the virus in severe therapy-resistant allergic

asthmatic children (26) but normal responses in well-con-

trolled asthmatic adults who were mostly atopic (95). In con-

trast to RV data, interferon responses to influenza A virus

and RSV in human bronchial epithelial cell cultures were

preserved in adults with mild to severe asthma (96).

Outdoor, indoor and food allergens

Relationships between different types of allergens (outdoor,

indoor, food) and the development and severity of allergic dis-

ease, including asthma, have been studied (97). For instance,

pollen allergy has been found to be interrelated with various

food allergies, digestive system Th2-inflammation and asthma

(98, 99). Cross-reactivity between pollen and several plant-

derived foods, nuts, and fruits has been well established (98).

Food allergy without concomitant asthma has been found to

be associated with increased nonspecific bronchial hyper-

responsiveness (100, 101), while several studies report that chil-

dren with asthma and concomitant food allergy have more

severe disease, poorer control and greater morbidity and

require more anti-asthma medications (102, 103).

The most common indoor allergens associated with asthma

include house dust mites, domestic animals (cats, dogs) and

cockroaches (97, 104), while fungi can be found both indoor

and outdoor. In a cohort of 300 asthmatic children (aged 4–
12 years), higher Der p 1 and pet allergen levels were found

to be associated with greater asthma severity (105).

Fungal exposure is universal and fungi can be linked to

asthma in a variety of ways. Fungal allergy drives asthma

severity, and long-term or uncontrolled fungal infections are

associated with a poor control of asthma, complications such

as bronchiectases and chronic allergic bronchopulmonary

aspergillosis (ABPA) (106). In the general asthma population,

sensitization to moulds ranges from 7% to 20%, in severe

asthma patients from 35% to 75%, being 54–91% in life-

threatening asthma population (107–111). The first evidence

of the link between the severity of asthma and fungal sensitiza-

tion dates to 1978, when Schwartz et al. (112) demonstrated a

relationship between asthma severity and Aspergillus spp sen-

sitization. Alternaria or Cladosporium spp sensitization was

associated with asthma severity in the European Community

Respiratory Health Survey. Furthermore, a recent paper has

shown that fungal sensitization in children with persistent

asthma is associated with disease severity (113) and a 2014

review has shown increasing evidence that sensitized asthmatic

children may be susceptible to asthma exacerbations when

exposed to outdoor fungal spores and that the severity of

exacerbation may vary with different fungi species (114).

The term ‘Severe Asthma with Fungal Sensitisation’

(SAFS) was introduced by Denning et al. (10) in 2006, to

describe those patients who have persistent severe asthma

(despite standard treatment) and evidence of fungal sensitiza-

tion, as defined by positive SPT, or fungus or fungal antigen-

specific sIgE, and do not meet the criteria for ABPA. Pro-

posed classification by an EAACI Task Force sets the total

IgE cut-off at <1000 IU/ml for SAFS and >1000 IU/ml for

ABPA. ABPA was accepted as an endotype (115), while

SAFS remains a pragmatic definition (106). ABPA may

develop in asthmatics with a genetic predisposition, and

therefore, SAFS may have the same background. Carefully

genotyping patients with different forms of asthma may

allow a better understanding of this disease.

‘Trichophyton Asthma’ is another clinical entity, where

inhalation or the presence of cutaneous infection (athlete’s

foot, onychomycosis) in sensitized asthmatics is associated

with disease severity (106, 116).

Smoking

Cigarette smoking itself may influence asthma, as it acceler-

ates lung function decline (117), impairs the response to CS

(both inhaled and oral) (118), increases airway oxidative

stress (119), perpetuates symptoms despite of treatment (120)

and induces the change of inflammatory phenotypes into

more aggressive ones (121), thereby resulting in a more severe

disease (122).

Smoking also increases serum IgE levels, especially in men

(123). This may result in an increased risk of allergic sensiti-

zation, at least for occupational allergens (124). However, the

relationship between cigarette smoking and allergy in severe

asthma is still debated: some studies identify smoking as a

risk factor for allergic asthma (125), while others show a

lower prevalence of atopic sensitization in smoking patients

with severe asthma (121). According to a large epidemiologi-

cal survey (ECRHS II), smoking was more strongly associ-

ated with severe asthma in men than in women, particularly

if they were sensitized to moulds (Cladosporium), house dust

mites or cats (126). Even more conflicting data come from

studies on the effect of passive smoking on the risk of devel-

opment of atopic sensitization (127).
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Cigarette smoking usually results in a more neutrophilic

airway inflammation, which is less responsive to ICS (121).

Accordingly, alveolar macrophages from smokers have a

reduced cellular CS responsiveness, which is associated with

reduced histone deacetylase activity, an essential molecule for

anti-inflammatory genes transcription (63, 128). In fact, they

show an elevated glucocorticoid receptors (GR) ratio in

PBMC which is in favour of GR-b (not able to induce any

transcriptional activity) compared to GR-a (the active iso-

form with anti-inflammatory effects) (129). These molecular

events make smoking asthmatics less responsive to CS, cur-

rently the standard controller therapy for asthma, leading

them to a more probable evolution to severe asthma (Fig. 2).

Recently, a new distinct phenotype of severe asthma has

been identified in frequent exacerbators, and history of smok-

ing seems to be a risk factor for this phenotype (130). A

novel risk score for asthma exacerbations developed and vali-

dated by Bateman et al. (131) supports the evidence that

smoking status is a main predictor for uncontrolled asthma.

Despite this well-known relationship, active smoking is still

surprisingly common among asthmatics (132). More efficient

smoking prevention programmes and smoking cessation

campaigns should be carried out to try to reduce the risk of

developing severe asthma. Moreover, most clinical trials with

new drugs aimed for severe asthma have been conducted in

nonsmoking patients, which results in incomplete knowledge

on the efficacy of such therapeutic approaches in smokers.

Large ‘real-life’ studies in severe asthma including smoking

asthmatics should be encouraged. The complex relationship

between cigarette smoking and atopic sensitization increasing

the risk of severe asthma should be better investigated as

only few and conflicting data are presently available. How-

ever, this relationship remains difficult to address, particu-

larly in cross-sectional studies, because of the potential

selection bias (e.g. ‘healthy smoker effect’) (133). Prospective

studies in lifetime smokers with lifetime smoking are more

appropriate to properly examine the relationships between

smoking and severe asthma.

Pollution

The health effects caused by outdoor air pollution have been

intensively studied during the last decades. The term ‘outdoor

air pollution’ involves particulate matter (PM), gaseous

Figure 2 Influence of smoking and atopy in determining more severe asthma.

Allergy 72 (2017) 207–220 © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 213

Del Giacco et al. Allergy and asthma severity



pollutions (nitrogen dioxide, sulphur dioxide and ozone) and

traffic-related air pollution (elemental and carbon black, road

dust) (134).

Increased exposure to ultrafine particles and carbon monox-

ide within the previous 4–7 days was associated with increased

relative odds of a paediatric asthma visit (135). Other studies

also indicate that sudden increase or decrease of exposure to

air pollution may affect asthmatic symptoms or emergency

department visits (136–138). Indeed, a decrease in the number

of acute asthma events of over 40% was found after reduction

in air pollution during summer Olympic games (138). So far,

these studies were performed in children and included only a

relatively low number of individuals.

Larger-scale studies also demonstrated an adverse effect of

outdoor air pollution on lung function (139–141). A multi-

center birth cohort study (ESCAPE) showed an association

between estimated levels of NO2 and PM2.5 and decreases in

FEV1 (139). In another birth cohort study (MAAS), lifetime

exposure to PM10 and NO2 was associated with significantly

less growth in FEV1 over time (140). In the same cohort, no

association was found between long-term exposure to PM10

and NO2 and the prevalence of asthma or wheeze (142). In

adult asthmatics, exposure to NO2 and PM10 was associated

with lower measures of FEV1 and FVC (143) and exposure

to ozone and PM10 increased the risk of uncontrolled asthma

(144). Overall, these studies thus provide evidence of an

inverse association between outdoor air pollution and lung

function (Table 1). Whether asthma severity is directly

affected by outdoor air pollution is unclear.

Several studies showed a positive association between

exposure to air pollution during infancy and sensitization to

inhalant allergens (145–147). Although the mechanism under-

lying this association is not fully understood, some evidence

suggests that ultrafine carbon black particles can directly

induce maturation of dendritic cells in vitro (148), thereby

facilitating sensitization to inhalant allergens. Alternatively,

airborne pollutants can induce the influx of inflammatory

cells to the lungs, which might then lower the threshold for

sensitization. Indeed, it has recently been shown that aller-

gen-specific Th2/Th17 cells accumulate in the lungs of mice

exposed to both diesel exhaust particles and house dust mite

extract (149). Diesel exhaust particles may also produce other

immunological effects (150, 151) (Table 2). Furthermore,

exposure to moderate air pollution during late pregnancy

was found to cause increased cord blood IL-1b (152). A

recent meta-analysis, however, showed no clear overall asso-

ciation between air pollution exposure and the development

of sensitization in children up to 10 years of age (153).

In summary, in multisensitized asthmatics, daily exposure

to allergens in combination with other enhancing factors,

including viral infections, environmental smoking and/or pol-

lution, will finally determine the asthma course and severity.

Occupational/work related

Severe asthma may occur in patients affected by work-

related asthma (WRA). WRA encompasses both occupa-

tional asthma (OA), defined as ‘asthma caused by the work-

place’ and ‘work-exacerbated asthma’ (WEA), occurring in

patients with pre-existing or concurrent asthma and exacer-

bated by different work-related factors (i.e. aeroallergens,

exercise, irritants) (154). OA can be further divided into two

subtypes: an allergic form (90% of all OA) (155), caused by

both an IgE-mediated mechanism towards high (HMW) and

low (LMW) molecular weight agents (106), and a non-IgE-

mediated form (nonallergic, irritant-induced [occupational]

asthma (IIOA)), towards specific LMW agents in which the

mechanism has not been characterized yet. The nonallergic

IIOA can be further divided into the ‘reactive airway dys-

function syndrome’ (RADS) and the ‘IIOA after multiple

exposures’. The first occurs after an acute, single exposure to

very high concentrations of irritating substances (156), while

the second follows multiple exposure to irritants; in this sub-

type, onset of asthma can follow the exposures after some

time (157, 158).

Work-related asthma should be suspected in patients

whose asthma worsens while working or begin at work. Here,

a detailed occupational and medical history is fundamental

(159, 160), while a clinical history only shows a low speci-

ficity in the diagnosis of OA (161). The investigation of

WRA follows a well-defined protocol based on confirmation

of bronchial asthma, work-related bronchoconstriction, sensi-

tization to occupational agents and on the confirmation of

the causal role of occupational agents, being sensitization per

se not indicative of clinical symptoms (162) (Fig. 3). Baseline
Table 1 Main pollutants and examples of their effects on respira-

tory function

Pollutant Outcome

Nitrogen

dioxide (NO2)

Decreased FEV1 (139)

Less growth of FEV1 over time (140)

Lower measures of FEV1 (143)

Lower measures of FVC (143)

PM2.5 Decreased FEV1 (139)

PM10 Less growth of FEV1 over time (140)

Lower measures of FEV1 (143)

Lower measures of FVC (143)

Increased risk of uncontrolled asthma (144)

Ozone (O3) Increased risk of uncontrolled asthma (144)

Table 2 Pollutants and examples of their effects on allergic inflam-

mation

Pollutant Outcome

Ultrafine carbon

black particles

Induced maturation of dendritic cells

in vitro (148)

Diesel exhaust

particles and

house dust

mite extract

Increased allergen-specific IgE and other

cardinal features of asthma (150)

Accumulation of allergen-specific Th2/Th17

cells in lungs (149)

Both Th2 and ILC2 contribute to DEP-enhanced

airway inflammation (151)
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spirometry is mandatory, and it is strongly recommended

that this should be complemented with nonspecific bronchial

hyper-reactivity assessment with direct or indirect challenges.

In individuals with suspected WRA, presenting with a nor-

mal respiratory function and/or negative methacholine chal-

lenge testing, serial lung function measurements and

assessment of nonspecific bronchial hyper-reactivity are

strongly recommended (162, 163). Additionally, spirometry

can be performed during a work shift (Cross-shift spirome-

try). Furthermore, serial measurements of peak flow

expiratory rate (serial PEFR) have been used to objectively

confirm the link between the workplace and the asthmatic

symptoms (164). Skin prick testing completes the diagnostic

work-up, and the selection of specific allergens related to the

individual’s job is fundamental. Specific IgE evaluation is

also of importance. The role of atopic mechanisms in severe

occupational asthma has been confirmed by a recent study

where treatment with omalizumab was successful in 90% of

severe occupational asthma patients due to HMW and LMW

agents, such as flour, animal dander, mites, moulds, iso-

cyanate or acrylates (165). It is worth noting that, at least in

OA, allergen exposure levels represent the major determi-

nants both for the disease as such and for the severity of

asthma (166, 167). Finally, specific inhalation challenges

(SICs) or workplace inhalation challenges, complemented by

the assessment of airway inflammation by induced sputum

and FeNO, may be considered.

Diagnosis of IIOA follows a well-defined protocol

described in a recent EAACI Task Force document (158).

Conclusion

There is increasing evidence for the important, but not exclu-

sive, role of allergy in severe asthma. Although some recent

reports demonstrate that allergy may play only a limited role,

this is likely not true for childhood disease, where early ato-

pic sensitization is critical in determining the severity of dis-

ease.

Mechanistic implications of cofactors interacting with

allergy and asthma, such as virus infections, pollution, smok-

ing and work-related exposures, still need to be completely

uncovered to allow the discovery of novel therapeutic targets.
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